Serum Amyloid A (SAA) ELISA

For the quantitative determination of SAA-1 in serum, plasma, and urine

For Research Use Only. Not For Use In Diagnostic Procedures.

Catalog Number: 56-SAAHU-E02
Size: 2 x 96 wells
Version: 03-10 - October 28, 2010
1. INTENDED USE

The human SAA ELISA kit is to be used for the *in vitro* quantitative determination of human SAA-1 in serum, plasma, and urine samples. This kit is intended for laboratory research use only and is not for use in diagnostic or therapeutic procedures.

The analysis should be performed by trained laboratory professionals.

2. INTRODUCTION

Serum Amyloid A (SAA) is the circulating precursor of amyloid A protein. In humans, four SAA genes have been described. Two genes (SAA1 and SAA2) encode acute phase SAA (A-SAA). SAA3 is a pseudogene from which no mRNA or protein product has been identified. SAA4 encodes constitutive SAA (C-SAA).

SAA is 20 kDa in size, 12.5 kDa under denaturing conditions. The liver is the primary site of synthesis of SAA. Extra-hepatic production has been demonstrated in macrophages, endothelial cells, epithelial cells, atherosclerotic lesions, tumors and synovial tissue. SAA-1 is the major isoform of SAA in plasma. SAA-1 levels in serum/plasma of healthy individuals range from 1-5 µg/ml.

SAA has a number of immunomodulatory roles, it can induce chemotaxis and adhesion molecule expression, has cytokine-like properties and can promote the upregulation of metalloproteinases. It enhances the binding of high-density lipoprotein to macrophages and thus assists in the delivery of lipids to sites of injury for use in tissue repair. It is thus thought to be an integral part of the disease processes. In addition, SAA is involved in cholesterol transport and metabolism.

SAA is an acute phase reactant and has been found to be elevated in many inflammatory states. The best known indicator of inflammation is C-reactive protein (CRP). However, SAA rises earlier and more sharply than CRP. In contrast to CRP, SAA presents the same trend in viral as well as bacterial infections. SAA increases dramatically during acute inflammation and may reach levels 1000-fold higher than normal.

Furthermore, SAA is an early indicator for transplant rejection, a possible marker for tumor activity and clinically useful in bacterial and viral infection. Elevated levels of SAA over time predispose to secondary amyloidosis, extracellular accumulation of amyloid fibrils, derived from a circulating precursor, in various tissues and organs. The most common form of amyloidosis occurs secondary to chronic inflammatory disease, particularly rheumatoid arthritis. The human SAA ELISA can be used for the measurement of SAA-1, the major isoform of SAA in plasma.

3. KIT FEATURES

- Working time of 2½ hours.
- Minimum concentration which can be measured is 3.1 ng/ml.
- Measurable concentration range of 3.1 to 200 ng/ml.
- Working volume of 100 µl/well.

Cross-reactivity

Potential cross-reacting proteins detected in the human SAA ELISA:

<table>
<thead>
<tr>
<th>Cross reactant</th>
<th>Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human SAP</td>
<td>negative</td>
</tr>
<tr>
<td>Human PTX3</td>
<td>negative</td>
</tr>
</tbody>
</table>

Table 1

Cross-reactivity for other species or proteins/peptides has not been tested.
4. PROTOCOL OVERVIEW

- The human SAA ELISA is a ready-to-use solid-phase enzyme-linked immunosorbent assay based on the sandwich principle with a working time of 2½ hours.
- The efficient format of 2 plates with twelve disposable 8-well strips allows free choice of batch size for the assay.
- Samples and standards are incubated in microtiter wells coated with antibodies recognizing human SAA.
- Biotinylated tracer antibody will bind to the captured human SAA.
- Streptavidin-peroxidase conjugate will bind to the biotinylated tracer antibody.
- Streptavidin-peroxidase conjugate will react with the substrate, tetramethylbenzidine (TMB).
- The enzyme reaction is stopped by the addition of oxalic acid.
- The absorbance at 450 nm is measured with a spectrophotometer. A standard curve is obtained by plotting the absorbance (linear) versus the corresponding concentrations of the human SAA standards (log).
- The human SAA concentration of samples, which are run concurrently with the standards, can be determined from the standard curve.

The diagram shows the protocol steps:

1. Microtiter wells coated with antibody
2. Diluted standard / samples 100 μl
 - 60 min 20-25°C
 - Wash 4x
3. Peroxidase conjugated antibody 100 μl
 - 60 min 20-25°C
 - Wash 4x
4. TMB solution 100 μl
 - 20-30 min 20-25°C
5. Stop solution 100 μl
6. Measurement at 450 nm
5. **KIT COMPONENTS AND STORAGE INSTRUCTIONS**

<table>
<thead>
<tr>
<th>Item no.</th>
<th>Kit component</th>
<th>Quantity</th>
<th>Color code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vial 1</td>
<td>Wash buffer 20x</td>
<td>2 vials (20 ml)</td>
<td>Grey</td>
</tr>
<tr>
<td>Vial 2</td>
<td>Dilution buffer 5x</td>
<td>1 vial (20 ml)</td>
<td>Gold</td>
</tr>
<tr>
<td>Vial 3</td>
<td>Standard</td>
<td>3 vials, 0.5 ml lyophilized</td>
<td>Yellow</td>
</tr>
<tr>
<td>Vial 4</td>
<td>Conjugate, peroxidase-labeled</td>
<td>2 vials, 1 ml lyophilized</td>
<td>Blue</td>
</tr>
<tr>
<td>Vial 5</td>
<td>TMB substrate</td>
<td>1 vial (20 ml)</td>
<td>Purple</td>
</tr>
<tr>
<td>Vial 6</td>
<td>Stop solution</td>
<td>1 vial (20 ml)</td>
<td>Red</td>
</tr>
<tr>
<td>Item 7</td>
<td>12 Microtiter strips, pre-coated</td>
<td>2 plates</td>
<td></td>
</tr>
<tr>
<td>Item 8</td>
<td>Frame</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Item 9</td>
<td>Adhesive covers</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Item 10</td>
<td>Certificate of quality control</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Item 11</td>
<td>Manual</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Item 12</td>
<td>Data collection sheet</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 2

- Upon receipt, store individual components at 2 - 8°C. Do not freeze.
- Do not use components beyond the expiration date printed on the kit label.
- The standard and conjugate are stable in lyophilized form until the expiration date indicated on the kit label, if stored at 2 - 8°C.
- The exact concentration of the standard is indicated on the label of the vial and the certificate of analysis.
- After reconstitution the standard must be used within 1 hour, the standard can not be stored for repeated use.
- Once reconstituted, conjugate is stable for 1 month if stored at 2 - 8°C.
- Upon receipt, foil pouch around the plate should be vacuum-sealed and unpunctured. Any irregularities to aforementioned conditions may influence plate performance in the assay.
- Return unused strips immediately to the foil pouch containing the desiccant pack and reseal along the entire edge of the zip-seal. Quality guaranteed until expiration date if stored at 2 - 8°C.

Materials required but not provided

- Calibrated micropipettes and disposable tips.
- Distilled or de-ionized water.
- Plate washer: automatic or manual.
 In case a plate washer is used the supplied wash buffer is not sufficient. Additional wash buffer can be ordered separately. Please contact your local distributor.
- Polypropylene tubes.
- Calibrated ELISA plate reader capable of measuring absorbance at 450 nm.
6. WARNINGS AND PRECAUTIONS

- For research use only, not for diagnostic or therapeutic use.
- This kit should only be used by qualified laboratory staff.
- Do not add under any circumstances sodium azide as preservative to any of the components.
- Do not use kit components beyond the expiration date.
- Do not mix reagents from different kits and lots. The reagents have been standardized as a unit for a given lot. Use only the reagents supplied by manufacturer.
- The assay has been optimized for the indicated standard range. Do not change the standard range.
- Standard and conjugate vials should be opened after reconstitution. Open vials carefully; vials are under vacuum.
- Do not ingest any of the kit components.
- Kit reagents contain 2-chloroacetamide as a preservative. 2-Chloroacetamide is harmful in contact with skin and toxic if swallowed. In case of accident or if you feel unwell, seek medical advise immediately.
- The TMB substrate is light sensitive, keep away from bright light. The solution should be colorless until use.
- The stop solution contains 2% oxalic acid and can cause irritation or burns to respiratory system, skin and eyes. Direct contact with skin and eyes should be strictly avoided. If contact occurs, rinse immediately with plenty of water and seek medical advise.
- Incubation times, incubation temperature and pipetting volumes other than those specified may give erroneous results.
- Do not reuse microwells or pour reagents back into their bottles once dispensed.
- Handle all biological samples as potentially hazardous and capable of transmitting diseases.
- Hemolyzed, hyperlipemic, heat-treated or contaminated samples may give erroneous results.
- Use polypropylene tubes for preparation of standard and samples. Do not use polystyrene tubes or sample plates.
- The standard is of human origin. It was tested for various viruses and found negative. Since no test method can offer complete assurance that infectious agents are absent, this reagent should be handled as any potentially infectious human serum or blood specimen. Handle all materials in contact with this reagent according to guidelines for prevention of transmission of blood-borne infections.

7. SAMPLE PREPARATION

Collection and handling

Serum or plasma
Collect blood using normal aseptic techniques. If serum is used, separate serum from blood after clotting at room temperature within 1 hour by centrifugation (1500xg at 4°C for 15 min). Transfer the serum to a fresh polypropylene tube.

If plasma is used, separate plasma from blood within 20 minutes after blood sampling by centrifugation (1500xg at 4°C for 15 min). Transfer the plasma to a fresh polypropylene tube. Most reliable results are obtained if EDTA plasma is used.

Urine
Collect urine using normal aseptic techniques. Centrifugate the urine to remove debris (1500xg at 4°C for 15 min). Transfer urine to a fresh polypropylene tube.
Storage
Store samples below -20°C, preferably at -70°C in polypropylene tubes. Storage at -20°C can affect recovery of human SAA. Use samples within 24 hours after thawing. Avoid multiple freeze-thaw cycles which may cause loss of human SAA activity and give erroneous results.
Do not use hemolyzed, hyperlipemic, heat-treated or contaminated samples.
Before performing the assay, samples should be brought to room temperature (18 – 25°C) and mixed gently. Prepare all samples (controls and test samples) prior to starting the assay procedure. Avoid foaming.

Dilution procedures

Serum or plasma samples
Human SAA can be measured accurately if serum or plasma samples are diluted at least 40x with supplied dilution buffer in polypropylene tubes.
Note that infection or acute inflammation can cause 1000-fold increase in SAA concentration.
Most reliable results are obtained with EDTA plasma.

Urine samples
Human SAA can be measured accurately if urine samples are diluted at least 5x with supplied dilution buffer in polypropylene tubes.

Remark regarding recommended sample dilution
The recommend dilution for samples should be used as a guideline. The recovery of human SAA from an undiluted sample is not 100% and may vary from sample to sample. When testing less diluted samples it is advisable to run recovery experiments to determine the influence of the matrix on the detection of human SAA.
Do not use polystyrene tubes or sample plates for preparation or dilution of the samples.
8. REAGENT PREPARATION

Allow all the reagents to equilibrate to room temperature (20 – 25°C) prior to use. Return to proper storage conditions immediately after use.

Wash buffer
Prepare wash buffer by mixing 40 ml of 20x wash buffer with 760 ml of distilled or de-ionized water, which is sufficient for 2 x 96 tests. In case less volume is required, prepare the desired volume of wash buffer by diluting 1 part of the 20x wash buffer with 19 parts of distilled or de-ionized water.

Dilution buffer
Prepare dilution buffer by mixing 20 ml of the 5x dilution buffer with 80 ml of distilled or de-ionized water, which is sufficient for 2 x 96 tests. In case less volume is required, prepare the desired volume of dilution buffer by diluting 1 part of the 5x dilution buffer with 4 parts of distilled or de-ionized water. Concentrated dilution buffer may contain crystals. In case the crystals do not disappear at room temperature within 1 hour, concentrated dilution buffer can be warmed up to 37°C. Do not shake the solution.

Standard solution
The standard is reconstituted by injection of 0.5 ml of distilled or de-ionized water. After reconstitution the standard must be used within 1 hour, the standard can not be stored for repeated use. Prepare each human SAA standard in polypropylene tubes by serial dilution of the reconstituted standard with dilution buffer as shown in Table 3.

<table>
<thead>
<tr>
<th>Tube</th>
<th>Volume dilution buffer</th>
<th>Volume standard</th>
<th>Concentration (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>See certificate of quality control</td>
<td>150 μl vial 3</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>225 μl</td>
<td>225 μl tube 1</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>225 μl</td>
<td>225 μl tube 2</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>225 μl</td>
<td>225 μl tube 3</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>225 μl</td>
<td>225 μl tube 4</td>
<td>12.5</td>
</tr>
<tr>
<td>6</td>
<td>225 μl</td>
<td>225 μl tube 5</td>
<td>6.3</td>
</tr>
<tr>
<td>7</td>
<td>225 μl</td>
<td>225 μl tube 6</td>
<td>3.1</td>
</tr>
<tr>
<td>8</td>
<td>225 μl</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3

Conjugate solution
The conjugate is reconstituted by injection of 1 ml distilled or de-ionized water. Dilute the reconstituted 1 ml conjugate with 11 ml dilution buffer, which is sufficient for 1 x 96 tests. In case less volume is required, prepare the desired volume of conjugate by diluting 1 part of the reconstituted conjugate with 11 parts of dilution buffer.
9. **ELISA PROTOCOL**

Bring all reagents to room temperature (20 - 25°C) before use.

1. Determine the number of test wells required, put the necessary microwell strips into the supplied frame, and fill out the data collection sheet. Return the unused strips to the storage bag with desiccant, seal and store at 2 - 8°C.

2. Transfer 100 μl in duplicate of standard, samples, or controls into appropriate wells. Do not touch the side or bottom of the wells.

3. Apply an adhesive cover to the tray. Tap the tray to eliminate any air bubbles. Be careful not to splash liquid onto the cover.

4. Incubate the strips or plate for 1 hour at room temperature.

5. Wash the plates 4 times with wash buffer as follows*:
 a. Carefully remove the plate sealer, avoid splashing.
 b. Empty the plate by inverting plate and shaking contents out over the sink, keep inverted and tap dry on a thick layer of tissues.
 c. Add 200 μl of wash buffer to each well, wait 20 seconds, empty the plate as described in 5b.
 d. Repeat the washing procedure 5b/5c three times.
 e. Empty the plate and gently tap on thick layer of tissues.

6. Add 100 μl of diluted conjugate to each well using the same pipetting order as applied in step 2. Do not touch the side or bottom of the wells.

7. Cover the tray with an adhesive cover. Incubate the tray for 1 hour at room temperature.

8. Repeat the wash procedure described in step 5.

9. Add 100 μl of TMB substrate to each well, using the same pipetting order as applied in step 2. Do not touch the side or bottom of the wells.

10. Cover the tray with a new adhesive cover, incubate the tray for 20 – 30 minutes at room temperature. Avoid exposing the microwell strips to direct sunlight. Covering the plate with aluminium foil is recommended.

11. Stop the reaction by adding 100 μl of stop solution with the same sequence and timing as used in step 9. Mix solutions in the wells thoroughly by gently swirling the plate. Gently tap the tray to eliminate any air bubbles trapped in the wells.

12. Read the plate within 30 minutes after addition of stop solution at 450 nm using a plate reader, following the instructions provided by the instrument’s manufacturer.

*) In case plate washer is used, please note: use of a plate washer can result in higher background and decrease in sensitivity. We advise validation of the plate washer with the manual procedure. Make sure the plate washer is used as specified for the manual method. Additional wash buffer can be ordered separately. Please contact your local distributor.

10. **INTERPRETATION OF RESULTS**

- Calculate the mean absorbance for each set of duplicate standards, control and samples.
- If individual absorbance values differ by more than 15% from the corresponding mean value, the result is considered suspect and the sample should be retested.
- The mean absorbance of the zero standard should be less than 0.3.
- Create a standard curve using computer software capable of generating a good curve fit. The mean absorbance for each standard concentration is plotted on the vertical (Y) axis versus the corresponding concentration on the horizontal (X) axis (logarithmic scale). For an example of the standard curve see certificate of quality control included with the kit. If the standard is out of range, the results of the test samples are not reliable. The test should be repeated.
- If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.
- Samples that give a mean absorbance above the absorbance for the highest standard concentration are out of range of the assay. These samples should be retested at a higher dilution.

11. TECHNICAL HINTS

- User should be trained and familiar with ELISA assays and test procedure.
- If you are not familiar with the ELISA technique it is recommended to perform a pilot assay prior to evaluation of your samples. Perform the assay with a standard curve only following the instructions.
- Improper or insufficient washing at any stage of the procedure will result in either false positive or false negative results. Completely empty wells before dispensing wash buffer, fill with wash buffer as indicated for each cycle and do not allow wells to sit uncovered or dry for extended periods.
- Since exact conditions may vary from assay to assay, a standard curve must be established for every run. If the standard is out of range, the results of the test samples are not reliable. The test should be repeated.
- Do not mix reagents from different batches, or other reagents and strips. Remainders should not be mixed with contents of freshly opened vials.
- Each time the kit is used, fresh dilutions of standard, sample, conjugate, and buffers should be made.
- Caps and vials are not interchangeable. Caps should be replaced on the corresponding vials.
- To avoid cross-contaminations, change pipette tips between reagent additions of each standard, between sample additions, and between reagent additions. Also, use separate reservoirs for each reagent.
- To ensure accurate results, proper adhesion of supplied covers during incubation steps is necessary.
- The waste disposal should be performed according to your laboratory regulations.
12. QUALITY CONTROL

The certificate of quality control included in this kit is lot specific and is to be used to verify results obtained by your laboratory. The absorption values provided on the certificate of quality control are to be used as a guideline only. The results obtained by your laboratory may differ.

This assay is designed to eliminate interference by soluble receptors, binding proteins, and other factors present in biological samples. Until all factors have been tested in the ALPCO immunoassay, the possibility of interference cannot be excluded.

For optimal performance of this kit, it is advised to work according to good laboratory practice.

13. TROUBLESHOOTING

Complaints in respect of deficiencies must be logged before expiry date of the product. A written complaint containing lot number of the product and experimental data should be sent to cs@alpco.com.

Suggestions summarized below in Table 4 can be used as guideline in case of unexpected assay results.

<table>
<thead>
<tr>
<th>Low absorbance</th>
<th>High absorbance</th>
<th>Poor duplicates</th>
<th>All wells positive</th>
<th>All wells negative</th>
<th>Possible cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Kit materials or reagents are contaminated or expired</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Incorrect reagents used</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Lyophilized reagents are not properly reconstituted</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>Incorrect dilutions or pipetting errors</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Improper plastics used for preparation of standard and/or samples</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Improper incubation times or temperature</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Especially in case of 37°C incubation: plates are not incubated uniformly</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Assay performed before reagents were adapted to room temperature</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Procedure not followed correctly</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Omission of a reagent or a step</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Poor mixing of samples</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Low purity of water</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Strips were kept dry for too long during/after washing</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Inefficient washing</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Cross-contamination from other samples or positive control</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>TMB solution is not clear or colorless</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Wrong filter in the microtiter reader</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Airbubbles</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Imprecise sealing of the plate after use</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>Wrong storage conditions</td>
</tr>
</tbody>
</table>

Table 4
14. REFERENCES