TNF-alpha ELISA

For the quantitative determination of TNF-alpha in serum, plasma, buffered solution or cell culture medium.

For Research Use Only. Not For Use In Diagnostic Procedures.

Catalog Number: 45-TNFHU-E01
Size: 96 wells
Catalog Number: 45-TNFHU-E05
Size: 5 x 96 wells
Version: Rev 1.00 07 APR 2011 - ALPCO July 15, 2013
PURPOSE

Human Tumor Necrosis Factor Alpha (Hu TNF-α), also called cachectin, is a 157 AA nonglycosylated polypeptide cytokine mainly produced by activated macrophages. Lipopolysaccharide (LPS) is a potent stimulus for TNF-α production in macrophages. TNF-α is an important mediator of the *in vivo* effects of LPS. The various biological activities of TNF-α may be classified as:

- Immunomodulating and proinflammatory activities: TNF-α regulates the production of antibodies by B cells and stimulates cytotoxic T cells.
- Metabolic activities: TNF-α strongly inhibits lipoprotein lipase and adipocyte gene expression.

This TNF-α ELISA is to be used for the quantitative determination of Hu TNF-α in human serum, plasma, buffered solutions, or cell culture medium. The assay recognizes both natural and recombinant forms of TNF-α.
For Research Use Only. CAUTION: Not for human or animal therapeutic or diagnostic use.

Read entire protocol before use.

PRINCIPLE OF THE METHOD

The tumor necrosis factor α kit is a solid phase sandwich Enzyme Linked-Immuno-Sorbent Assay (ELISA). A monoclonal antibody specific for Hu TNF-α has been coated onto the wells of the microtiter strips provided. Samples, including standards of known Hu TNF-α content, control specimens, and unknowns, are pipetted into these wells.

During the first incubation, the Hu TNF-α antigen binds to the immobilized (capture) antibody on one site. After washing, a biotinylated monoclonal antibody specific for Hu TNF-α is added. During the second incubation, this antibody binds to the immobilized Hu TNF-α captured during the first incubation.

After removal of excess second antibody, Streptavidin-Peroxidase (enzyme) is added. This binds to the biotinylated antibody to complete the four-member sandwich. After a third incubation and washing to remove all the unbound enzyme, a substrate solution is added, which is acted upon by the bound enzyme to produce color. The intensity of this colored product is directly proportional to the concentration of Hu TNF-α present in the original specimen.
REAGENTS PROVIDED

Note: Store all reagents at 2 to 8°C.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>96 Test Kit</th>
<th>192 Test Kit</th>
<th>480 Test Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu TNF-α Standard, recombinant Hu TNF-α. Refer to vial label for quantity and reconstitution volume.</td>
<td>2 vials</td>
<td>4 vials</td>
<td>10 vials</td>
</tr>
<tr>
<td>Standard Diluent Buffer. Contains 8 mM sodium azide; 25 mL per bottle.</td>
<td>1 bottle</td>
<td>2 bottles</td>
<td>5 bottles</td>
</tr>
<tr>
<td>Incubation Buffer, Contains 8 mM sodium azide; 11 mL per bottle.</td>
<td>1 bottle</td>
<td>1 bottle</td>
<td>5 bottles</td>
</tr>
<tr>
<td>Hu TNF-α Antibody-Coated Wells, 96 wells per plate.</td>
<td>1 plate</td>
<td>2 plates</td>
<td>5 plates</td>
</tr>
<tr>
<td>Hu TNF-α Biotin Conjugate, (Biotin-labeled anti-Hu TNF-α). Contains 8 mM sodium azide; 11 mL per bottle.</td>
<td>1 bottle</td>
<td>2 bottles</td>
<td>5 bottles</td>
</tr>
<tr>
<td>Streptavidin-Peroxidase (HRP), (100x concentrate). Contains 1.3 mM thymol; 0.125 mL per vial.</td>
<td>1 vial</td>
<td>2 vials</td>
<td>5 vials</td>
</tr>
<tr>
<td>Streptavidin-Peroxidase (HRP) Diluent. Contains 1.3 mM thymol and 0.05% Proclin® 300; 25 mL per bottle.</td>
<td>1 bottle</td>
<td>1 bottle</td>
<td>3 bottles</td>
</tr>
<tr>
<td>Wash Buffer Concentrate (25X); 100 mL per bottle.</td>
<td>1 bottle</td>
<td>1 bottle</td>
<td>2 bottles</td>
</tr>
<tr>
<td>Stabilized Chromogen, Tetramethylbenzidine (TMB); 25 mL per bottle.</td>
<td>1 bottle</td>
<td>1 bottle</td>
<td>3 bottles</td>
</tr>
<tr>
<td>Stop Solution; 25 mL per bottle.</td>
<td>1 bottle</td>
<td>1 bottle</td>
<td>3 bottles</td>
</tr>
<tr>
<td>Plate Covers, adhesive strips.</td>
<td>3</td>
<td>6</td>
<td>15</td>
</tr>
</tbody>
</table>
Disposal Note: This kit contains materials with small quantities of sodium azide. Sodium azide reacts with lead and copper plumbing to form explosive metal azides. Upon disposal, flush drains with a large volume of water to prevent azide accumulation. Proclin® 300 is toxic. Avoid ingestion and contact with eyes, skin and mucous membranes. In case of contact, rinse affected area with plenty of water. Observe all federal, state and local regulations for disposal.

SUPPLIES REQUIRED BUT NOT PROVIDED

1. Microtiter plate reader capable of measurement at or near 450 nm.
2. Calibrated adjustable precision pipettes, preferably with disposable plastic tips. (A manifold multi-channel pipette is desirable for large assays.)
3. Distilled or deionized water.
4. Plate washer: automated or manual (squirt bottle, manifold dispenser, etc.).
5. Data analysis and graphing software. Graph paper: linear (Cartesian), log-log, or semi-log, as desired.
6. Glass or plastic tubes for diluting and aliquoting standard.
7. Absorbent paper towels.
8. Calibrated beakers and graduated cylinders in various sizes.

PROCEDURAL NOTES/LAB QUALITY CONTROL

1. When not in use, kit components should be refrigerated. All reagents should be warmed to room temperature before use.
2. **Microtiter plates should be allowed to come to room temperature before opening the foil bags.** Once the desired number of strips has been removed, immediately reseal the bag and store at 2 to 8°C to maintain plate integrity.
3. Samples should be collected in pyrogen/endotoxin-free tubes. The Hu TNF-α ELISA kit may be used to measure TNF-α in serum, EDTA or heparinized plasma and cell culture samples.

4. Samples should be frozen if not analyzed shortly after collection. Avoid multiple freeze-thaw cycles of frozen samples. Thaw completely and mix well prior to analysis.

5. When possible, avoid use of badly hemolyzed or lipemic sera. If large amounts of particulate matter are present, centrifuge or filter prior to analysis.

6. It is recommended that all standards, controls and samples be run in duplicate.

7. Add reagents to wells exactly as defined in the protocol. For maximum recovery, add Incubation Buffer (or Standard Diluent) to wells prior to Sample addition.

8. Samples that are >1000 pg/mL should be diluted with *Standard Diluent Buffer* for serum/plasma samples and with corresponding medium for cell culture samples.

9. When pipetting reagents, maintain a consistent order of addition from well-to-well. This ensures equal incubation times for all wells.

10. Cover or cap all reagents when not in use.

11. **Do not mix or interchange different reagent lots from various kit lots.**

12. Do not use reagents after the kit expiration date.

13. Read absorbances within 2 hours of assay completion.

14. In-house controls should be run with every assay. If control values fall outside pre-established ranges, the accuracy of the assay is suspect.
15. All residual wash liquid must be drained from the wells by efficient aspiration or by decantation followed by tapping the plate forcefully on absorbent paper. *Never* insert absorbent paper directly into the wells.

16. Because *Stabilized Chromogen* is light sensitive, avoid prolonged exposure to light. Also, avoid contact between *Stabilized Chromogen* and metal to prevent color development.

SAFETY

All blood components and biological materials should be handled as potentially hazardous. Follow universal precautions as established by the Centers for Disease Control and Prevention and by the Occupational Safety and Health Administration when handling and disposing of infectious agents.

DIRECTIONS FOR WASHING

Incomplete washing will adversely affect the test outcome. All washing must be performed with *Wash Buffer Concentrate (25X)* provided.

Washing can be performed manually as follows: completely aspirate the liquid from all wells by gently lowering an aspiration tip (aspiration device) into the bottom of each well. Take care not to scratch the inside of the well.

After aspiration, fill the wells with at least 0.4 mL of diluted wash solution. Let soak for 15 to 30 seconds, then aspirate the liquid. Repeat as directed under **ASSAY METHOD**. After the washing procedure, the plate is inverted and tapped dry on absorbent tissue.
Alternatively, the wash solution may be put into a squirt bottle. If a squirt bottle is used, flood the plate with wash buffer, completely filling all wells. After the washing procedure, the plate is inverted and tapped dry on absorbent tissue.

If using an automated washer, the operating instructions for washing equipment should be carefully followed.

REAGENT PREPARATION AND STORAGE

A. Reconstitution and Dilution of Hu TNF-α Standard

This assay has been calibrated against the International Standard preparation (87/650) for Hu TNF-α (NIBSC, Hertfordshire, UK, EN6 3QG). One microgram equals 40,000 International Units.

Note: Either glass or plastic tubes may be used for standard dilutions.

1. Reconstitute standard to 2000 pg/mL with Standard Diluent Buffer. Refer to standard vial label for instructions. Swirl or mix gently and allow to sit for 10 minutes to ensure complete reconstitution. Use standard within 1 hour of reconstitution.

2. Add 0.300 mL of the reconstituted standard to a tube containing 0.300 mL Standard Diluent Buffer. Label as 1000 pg/mL Hu TNF-α. Mix.

3. Add 0.300 mL of Standard Diluent Buffer to each of 6 tubes labeled 500, 250, 125, 62.5, 31.2 and 15.6 pg/mL Hu TNF-α.

4. Make serial dilutions of the standard as described in the following dilution table. Mix thoroughly between steps.
B. Dilution of Hu TNF-α Standard

<table>
<thead>
<tr>
<th>Standard:</th>
<th>Add:</th>
<th>Into:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 pg/mL</td>
<td>Prepare as described in Step 2.</td>
<td></td>
</tr>
<tr>
<td>500 pg/mL</td>
<td>0.300 mL of the 1000 pg/mL std.</td>
<td>0.300 mL of the Diluent Buffer</td>
</tr>
<tr>
<td>250 pg/mL</td>
<td>0.300 mL of the 500 pg/mL std.</td>
<td>0.300 mL of the Diluent Buffer</td>
</tr>
<tr>
<td>125 pg/mL</td>
<td>0.300 mL of the 250 pg/mL std.</td>
<td>0.300 mL of the Diluent Buffer</td>
</tr>
<tr>
<td>62.5 pg/mL</td>
<td>0.300 mL of the 125 pg/mL std.</td>
<td>0.300 mL of the Diluent Buffer</td>
</tr>
<tr>
<td>31.2 pg/mL</td>
<td>0.300 mL of the 62.5 pg/mL std.</td>
<td>0.300 mL of the Diluent Buffer</td>
</tr>
<tr>
<td>15.6 pg/mL</td>
<td>0.300 mL of the 31.2 pg/mL std.</td>
<td>0.300 mL of the Diluent Buffer</td>
</tr>
<tr>
<td>0 pg/mL</td>
<td>0.300 mL of the Diluent Buffer</td>
<td>An empty tube</td>
</tr>
</tbody>
</table>

Discard all remaining reconstituted and diluted standards after completing assay. Return the *Standard Diluent Buffer* to the refrigerator.
C. Storage and Final Dilution of Streptavidin-HRP

1. Dilute 10 μL of this 100x concentrated solution with 1 mL of *Streptavidin-HRP Diluent* for each 8-well strip used in the assay. Label as Streptavidin-HRP Working Solution.

For Example:

<table>
<thead>
<tr>
<th># of 8-Well Strips</th>
<th>Volume of Streptavidin-HRP Concentrate</th>
<th>Volume of Diluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20 μL solution</td>
<td>2 mL</td>
</tr>
<tr>
<td>4</td>
<td>40 μL solution</td>
<td>4 mL</td>
</tr>
<tr>
<td>6</td>
<td>60 μL solution</td>
<td>6 mL</td>
</tr>
<tr>
<td>8</td>
<td>80 μL solution</td>
<td>8 mL</td>
</tr>
<tr>
<td>10</td>
<td>100 μL solution</td>
<td>10 mL</td>
</tr>
<tr>
<td>12</td>
<td>120 μL solution</td>
<td>12 mL</td>
</tr>
</tbody>
</table>

2. Return the unused *Streptavidin-HRP* concentrate to the refrigerator.

D. Dilution of Wash Buffer

Allow the *Wash Buffer Concentrate (25X)* to reach room temperature and mix to ensure that any precipitated salts have redissolved. Dilute 1 volume of the *Wash Buffer Concentrate (25X)* with 24 volumes of deionized water (e.g., 50 mL may be diluted up to 1.25 liters, 100 mL may be diluted up to 2.5 liters). Label as Working Wash Buffer.
Store both the concentrate and the Working Wash Buffer in the refrigerator. The diluted buffer should be used within 14 days.

ASSAY METHOD: PROCEDURE AND CALCULATIONS

Be sure to read the Procedural Notes/Lab Quality Control section before carrying out the assay.

Allow all reagents to reach room temperature before use. Gently mix all liquid reagents prior to use.

1. Determine the number of 8-well strips needed for the assay. Insert these in the frame(s) for current use. (Re-bag extra strips and frame. Store these in the refrigerator for future use.)

Note: Please add the reagents in the following order:

2. Add 50 μL of Incubation Buffer to the wells containing standards and serum/plasma samples, or 50 μL of Standard Diluent Buffer to the wells containing cell culture samples. Well(s) reserved for chromogen blank should be left empty.

3. Add 100 μL of the Standard Diluent Buffer to zero wells. Well(s) reserved for chromogen blank should be left empty.

4. Add 100 μL of standards, samples or controls to the appropriate microtiter wells. (See REAGENT PREPARATION AND STORAGE, Section B.)

5. Cover plate with plate cover and incubate for 2 hours at room temperature.

6. Thoroughly aspirate or decant solution from wells and discard the liquid. Wash wells 4 times. See DIRECTIONS FOR WASHING.
7. Pipette 100 μL of biotinylated anti-TNF-α (*Biotin Conjugate*) solution into each well except the chromogen blank(s). Tap gently on the side of the plate to mix.

8. Cover plate with *plate cover* and incubate for **1 hour at room temperature**.

9. Thoroughly aspirate or decant solution from wells and discard the liquid. Wash wells 4 times. See **DIRECTIONS FOR WASHING**.

10. Add 100 μL *Streptavidin-HRP Working Solution* to each well except the chromogen blank(s). (Prepare the working dilution as described in **REAGENT PREPARATION AND STORAGE**, Section C.)

11. Cover plate with the *plate cover* and incubate for **30 minutes at room temperature**.

12. Thoroughly aspirate or decant solution from wells and discard the liquid. Wash wells 4 times. See **DIRECTIONS FOR WASHING**.

13. Add 100 μL of *Stabilized Chromogen* to each well. The liquid in the wells will begin to turn blue.

14. Incubate for **30 minutes at room temperature and in the dark**. **Please Note**: Do not cover the plate with aluminum foil or *metalized mylar*. The incubation time for chromogen substrate is often determined by the microtiter plate reader used. Many plate readers have the capacity to record a maximum optical density (O.D.) of 2.0. The O.D. values should be monitored and the substrate reaction stopped before the O.D. of the positive wells exceed the limits of the instrument. The O.D. values at 450 nm can
only be read after the Stop Solution has been added to each well. If using a reader that records only to 2.0 O.D., stopping the assay after 20 to 25 minutes is suggested.

15. Add 100 μL of Stop Solution to each well. Tap side of plate gently to mix. The solution in the wells should change from blue to yellow.

16. Read the absorbance of each well at 450 nm having blanked the plate reader against a chromogen blank composed of 100 μL each of Stabilized Chromogen and Stop Solution. Read the plate within 2 hours after adding the Stop Solution.

17. Plot on graph paper the absorbance of the standards against the standard concentration. (Optimally, the background absorbance may be subtracted from all data points, including standards, unknowns and controls, prior to plotting.) Draw the best smooth curve through these points to construct the standard curve. If using curve fitting software, the four parameter algorithm provides the best curve fit.

18. Read the Hu TNF-α concentrations for unknown samples and controls from the standard curve plotted in Step 17. (Samples producing signals greater than that of the highest standard (1000 pg/mL) should be diluted in Standard Diluent Buffer for serum/plasma samples or corresponding medium for cell culture samples and reanalyzed, multiplying the concentration found by the appropriate dilution factor.)
TYPICAL DATA

The following data were obtained for the various standards over the range of 0 to 1000 pg/mL Hu TNF-α.

<table>
<thead>
<tr>
<th>Standard Hu TNF-α (pg/mL)</th>
<th>Optical Density (450 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.078</td>
</tr>
<tr>
<td>15.6</td>
<td>0.153</td>
</tr>
<tr>
<td>31.2</td>
<td>0.222</td>
</tr>
<tr>
<td>62.5</td>
<td>0.382</td>
</tr>
<tr>
<td>125</td>
<td>0.745</td>
</tr>
<tr>
<td>250</td>
<td>1.178</td>
</tr>
<tr>
<td>500</td>
<td>1.970</td>
</tr>
<tr>
<td>1000</td>
<td>3.381</td>
</tr>
</tbody>
</table>
LIMITATIONS OF THE PROCEDURE

Do not extrapolate the standard curve beyond the 1000 pg/mL standard point; the dose-response is non-linear in this region and accuracy is difficult to obtain. Dilute samples >1000 pg/mL with Standard Diluent Buffer or corresponding medium according to sample type, reanalyze these and multiply results by the appropriate dilution factor.

The influence of various drugs, aberrant sera (hemolyzed, hyperlipidemic, jaundiced, etc.) and the use of biological fluids in place of serum samples have not been thoroughly investigated. The rate of degradation of native Hu TNF-α in various matrices has not been investigated. The immunoassay literature contains frequent references to aberrant signals seen with some sera, attributed to heterophilic antibodies. Though such samples have not been seen to date, the possibility of this occurrence cannot be excluded.

For Research Use Only. CAUTION: Not for human or animal therapeutic or diagnostic use.

PERFORMANCE CHARACTERISTICS

SENSITIVITY

The minimum detectable dose of Hu TNF-α is 1.7 pg/mL. This was determined by adding two standard deviations to the mean O.D. obtained when the zero standard was assayed 20 times.
PRECISION

1. Intra-Assay Precision

Samples of known Hu TNF-α concentration were assayed in replicates of 16 to determine precision within an assay.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mean (pg/mL)</th>
<th>SD</th>
<th>%CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>58.0</td>
<td>3.0</td>
<td>5.2</td>
</tr>
<tr>
<td>Sample 2</td>
<td>167.0</td>
<td>6.9</td>
<td>4.1</td>
</tr>
<tr>
<td>Sample 3</td>
<td>459.0</td>
<td>18.0</td>
<td>3.9</td>
</tr>
</tbody>
</table>

SD = Standard Deviation
CV = Coefficient of Variation

2. Inter-Assay Precision

Samples were assayed 18 times in multiple assays to determine precision between assays.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mean (pg/mL)</th>
<th>SD</th>
<th>%CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>47.0</td>
<td>4.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Sample 2</td>
<td>170.0</td>
<td>14.0</td>
<td>8.2</td>
</tr>
<tr>
<td>Sample 3</td>
<td>438.0</td>
<td>26.0</td>
<td>5.9</td>
</tr>
</tbody>
</table>

SD = Standard Deviation
CV = Coefficient of Variation
LINEARITY OF DILUTION

Human serum containing 806 pg/mL of measured Hu TNF-α was serially diluted in *Standard Diluent Buffer* over the range of the assay. Linear regression analysis of samples versus the expected concentration yielded a correlation coefficient of 0.99.

RECOVERY

Recovery in EDTA, heparin and citrate plasma averaged 96, 88 and 93%, respectively. The recovery of Hu TNF-α added to human serum averaged 92%. The recovery of Hu TNF-α added to tissue culture medium containing 10% fetal bovine serum averaged 107%.

SPECIFICITY

Buffered solutions of a panel of substances at 50 ng/mL were assayed with this brand of Hu TNF-α kit. The following substances were tested and found to have no cross-reactivity: human IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, IFN-α, IFN-β, IFN-γ, GM-CSF, OSM, MIP-1α, MIP-1β, LIF, MCP-1, G-CSF, TGF-β, RANTES; swine TNF-α; rat TNF-α; mouse TNF-α.

STIMULATION PROTOCOLS

Human PBMCs or whole blood can be stimulated from 4 to 72 hours with:

-LPS (Lipopolysaccharide) 0.1 ng/mL: production of Hu TNF-α - 1800 to 6000 pg/mL with 10-fold diluted whole blood.

-PHA (Phytohaemagglutinin) 1 µg/mL: production of Hu TNF-α - 1800 to 6000 pg/mL with 10-fold diluted whole blood.
- LPS (25 μg/mL) + PHA (5 μg/mL): production of Hu TNF-α - 5000 to 11,000 pg/mL with 10-fold diluted whole blood.
- Ionomycin (0.1 μg/mL) + PMA (Phorbol Myristate Acetate; 3 ng/mL): production of Hu TNF-α - 1600 to 9000 pg/mL with 10-fold diluted whole blood.

REFERENCES

Human TNF-α Assay Summary

Sample type: Tissue Culture Supernatant
- Add 100 μL Sample
- Incubate for 2 hours at RT
- Aspirate and wash 4x
- Incubate 100 μL of Biotin Conjugate for 1 hour at RT
- Aspirate and wash 4x
- Incubate 100 μL of Streptavidin-HRP Working Solution for 30 minutes at RT
- Aspirate and wash 4x
- Incubate 100 μL of Stabilized Chromogen for 30 minutes at RT
- Add 100 μL Stop Solution and read at 450 nm

Total time: 4 hours

Sample type: Serum/Plasma/Control/Standard
- Add 100 μL Sample

US Customers - For Research Use Only. Not for Use in Diagnostic Procedures